Bayesian Learning via Stochastic Gradient Langevin Dynamics
نویسندگان
چکیده
In this paper we propose a new framework for learning from large scale datasets based on iterative learning from small mini-batches. By adding the right amount of noise to a standard stochastic gradient optimization algorithm we show that the iterates will converge to samples from the true posterior distribution as we anneal the stepsize. This seamless transition between optimization and Bayesian posterior sampling provides an inbuilt protection against overfitting. We also propose a practical method for Monte Carlo estimates of posterior statistics which monitors a “sampling threshold” and collects samples after it has been surpassed. We apply the method to three models: a mixture of Gaussians, logistic regression and ICA with natural gradients.
منابع مشابه
Hybrid Deterministic-stochastic Gradient Langevin Dynamics for Bayesian Learning
We propose a new algorithm to obtain Bayesian posterior distribution by a hybrid deterministic-stochastic gradient Langevin dynamics. To speed up convergence and reduce computational costs, it is common to use stochastic gradient method to approximate the full gradient by sampling a subset of the large dataset. Stochastic gradient methods make progress fast initially, however, they often become...
متن کاملApproximation Analysis of Stochastic Gradient Langevin Dynamics by using Fokker-Planck Equation and Ito Process
The stochastic gradient Langevin dynamics (SGLD) algorithm is appealing for large scale Bayesian learning. The SGLD algorithm seamlessly transit stochastic optimization and Bayesian posterior sampling. However, solid theories, such as convergence proof, have not been developed. We theoretically analyze the SGLD algorithm with constant stepsize in two ways. First, we show by using the Fokker-Pla...
متن کاملStochastic gradient method with accelerated stochastic dynamics
In this paper, we propose a novel technique to implement stochastic gradient methods, which are beneficial for learning from large datasets, through accelerated stochastic dynamics. A stochastic gradient method is based on mini-batch learning for reducing the computational cost when the amount of data is large. The stochasticity of the gradient can be mitigated by the injection of Gaussian nois...
متن کاملNatural Langevin Dynamics for Neural Networks
One way to avoid overfitting in machine learning is to use model parameters distributed according to a Bayesian posterior given the data, rather than the maximum likelihood estimator. Stochastic gradient Langevin dynamics (SGLD) is one algorithm to approximate such Bayesian posteriors for large models and datasets. SGLD is a standard stochastic gradient descent to which is added a controlled am...
متن کاملStochastic Gradient Hamiltonian Monte Carlo with Variance Reduction for Bayesian Inference
Gradient-based Monte Carlo sampling algorithms, like Langevin dynamics and Hamiltonian Monte Carlo, are important methods for Bayesian inference. In large-scale settings, full-gradients are not affordable and thus stochastic gradients evaluated on mini-batches are used as a replacement. In order to reduce the high variance of noisy stochastic gradients, [Dubey et al., 2016] applied the standard...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011